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SUMMARY

Variation in gene expression is an important feature
of mouse embryonic stem cells (ESCs). However,
the mechanisms responsible for global gene
expression variation in ESCs are not fully under-
stood. We performed single-cell mRNA-seq anal-
ysis of mouse ESCs and uncovered significant
heterogeneity in ESCs cultured in serum. We define
highly variable gene clusters with distinct chro-
matin states and show that bivalent genes are
prone to expression variation. At the same time,
we identify an ESC-priming pathway that initiates
the exit from the naive ESC state. Finally, we pro-
vide evidence that a large proportion of intracel-
lular network variability is due to the extracellular
culture environment. Serum-free culture reduces
cellular heterogeneity and transcriptome variation
in ESCs.
INTRODUCTION

Early mammalian development cells differentiate toward tro-

phectoderm (TE) and inner cell mass (ICM). The ICM goes on

to form the epiblast (EPI) and the primitive endoderm (PE).

Embryonic stem cells (ESCs) can be derived from the ICM in

the presence of leukemia inhibitory factor (LIF) and fetal calf

serum (FCS) (Evans and Kaufman, 1981). ESCs have two impor-

tant characteristics: the capacity for differentiation into all

somatic cell types and the property of unlimited self-renewal

in vitro.
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Previous studies suggest that ESCs in culture are not ho-

mogeneous. Transcription factors associated with ESC iden-

tity may be expressed in a heterogeneous manner. For

example, Nanog and Dppa3 are expressed in only a fraction

of cells (Chambers et al., 2007; Hayashi et al., 2008). Varia-

tion in expression of these individual genes has been impli-

cated in controlling the differentiation potential of different

subpopulations. However, traditional methods are limited to

the analysis of small number of genes. The mechanisms un-

derlying genome-scale ESC variability are not fully

characterized.

Single-cell gene expression analysis has been developed as a

powerful tool for studying cellular heterogeneity and hierarchy.

Several hallmark technical advances have been achieved.

High-throughput single-cell qPCR is a dynamic approach for

quantifying a set of target genes in systems of interest (Buganim

et al., 2012; Dalerba et al., 2011; Guo et al., 2010, 2013;

Moignard et al., 2013). Single-cell mass cytometry constitutes

a complementary system for multiplexed gene expression anal-

ysis at the protein level (Bendall et al., 2011). Single-cell mRNA-

sequencing strategies, which enable whole-transcriptome

analysis from individual cells, have become increasingly mature

and capable (Fan et al., 2015; Hashimshony et al., 2012;

Islam et al., 2011; Jaitin et al., 2014; Klein et al., 2015; Macosko

et al., 2015; Ramsköld et al., 2012; Sasagawa et al., 2013; Shalek

et al., 2013; Tang et al., 2009, 2010; Treutlein et al., 2014;

Xue et al., 2013; Yan et al., 2013).

Using single-cell technologies, several studies have reported

transcriptomic analysis of mouse ESCs and uncovered signaling

and microRNA pathways that influence heterogeneity of ESCs in

culture (Gr€un et al., 2014; Kumar et al., 2014). More-recent

studies have also examined transcriptional networks and cell-

cycle regulators that contribute to transcriptional variation

(Kolodziejczyk et al., 2015; Papatsenko et al., 2015). Epigenetic
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regulation, which may also contribute to overall variability, has

not been adequately explored. Moreover, the relevance of ESC

culture heterogeneity to early embryonic development has yet

to be analyzed.

In this study, we sought to combine the power of microfluidic-

based single-cell mRNA-seq and single-cell qPCR to charac-

terize in depth the molecular basis of heterogeneity among

mouse ESCs in culture. We employ optimized computational

strategies to reveal epigenetic mechanisms contributing to vari-

ation in gene expression and search for upstream pathways that

induce network plasticity.

RESULTS

Single-Cell mRNA-Seq Analysis Reveals Heterogeneity
among Mouse ESCs in Culture
We performed single-cell mRNA-seq analysis of undifferentiated

ESCs in culture. Feeder-free J1 ESCs were grown in the pres-

ence of serum and LIF. Single ESCs were captured on a me-

dium-sized (10–17 mm cell diameter) microfluidic RNA-seq chip

(Fluidigm) using the Fluidigm C1 system (Figure 1A). Whole-tran-

scriptome-sequencing libraries were prepared using template

switching-based amplification (Figure 1B). We compared the

abundance of selected markers from single-cell cDNA amplified

with the template switching (SMART) method, as well as the

sequence-specific amplification (SSA) method. qPCR results

from different amplification products revealed comparable

expression patterns for wild-type ESCs, namely high-level

detection of EPI markers Pou5f1, Nanog, and Sox2, as well as

low-level detection of TE markers, Cdx2 and Gata3. From ampli-

fied cDNA, we detected a bimodal distribution for Id2 and sharp

unimodal distribution for endogenous controls, Actb and Gapdh

(Figure 1C).

Amplified single-cell libraries were barcoded, pooled, and

sequenced to a depth of about 1.2 million reads per sample.

For each gene in a sample, the median reads per kilobase of

transcript per million reads mapped (RPKM) was approximately

ten (Figures S1A and S1B). In order to filter out unreliable sig-

nals, we removed genes with low copy counts and ensured

an average Pearson correlation of R = 0.8 between two

sequencing duplicates for each single-cell library (Figures

S1C–S1E; see Experimental Procedures for details). Using

this strategy, we recover �9,000 genes per cell (Figure 1D).

The average of single-cell mRNA-seq profiles from ESCs

showed high correlation with bulk mRNA-seq profiles from

the same cell line (Figure 1E). However, we observed that a

fraction of the samples had distinct global signatures from

the others, suggesting strong heterogeneity under the tested

culture conditions (Figure S1F). Although an endogenous con-

trol gene, Actb, and a pluripotency gene, Pou5f1, were homo-

genously expressed among single cells, we observed strong

variation of other markers, including Lamb1, Clu, and Snai1 in

both J1 and E14 cells (Figures S1G and S1H). By examining

the expression correlation of key lineage regulators in the sin-

gle-cell data, we defined different gene modules that correlate

with this heterogeneity (Figure 1F). The tightly correlated plurip-

otency markers, Pou5f1, Sox2, Nanog, and Fgf4, define a mod-

ule for maintaining the undifferentiated ESC state. A Sox17,
C

Gata6, and Gata4 cluster reflects a PE module that is indicative

of PE differentiation.

Gene Expression Variability Is Associated with Distinct
Chromatin States
In order to study variability of gene expression within the single-

cell transcriptome data, we first tested different ways to quantify

the level of variability. As variability measurements are easily

influenced by mean level and amplification bias, we sought to

decouple gene expression variation from the mean expression.

We fitted a Lowess curve to log2 of the mean expression versus

the log2 of the SD and then calculated the distance from this

curve for each gene (Figure 2A). Because the distribution of

this distance is approximately normal, we further rescaled the

values by converting to Z scores. The resulting value, which

we term the Lowess coefficient of dispersion (LCOD), is used

to quantify the variation of gene expression. We show that

LCOD is the least correlated or anti-correlated with the mean

expression level as compared to other measurements (Fig-

ure 2B). We then selected the most- (LCOD > 1.5) and the

least-variable genes (LCOD <�1.5). Gene Ontology (GO) enrich-

ment analysis indicated that the most-variable genes are related

predominantly with developmental processes, whereas the

least-variable genes are enriched for translation, mRNA pro-

cessing, and splicing (Figure S2A).

To investigate the mechanism underlying variability at the sin-

gle-cell level, we integrated our single-cell mRNA-seq data with

the genome-wide transcription factor binding and chromatin

state information obtained from publicly available bulk-level

ChIP-seq data sets. We mapped both transcription factor occu-

pancy and key chromatin marks in a 10-kb window at the tran-

scriptional start site of the most- and least-variable genes. Of

note, the master pluripotency regulators, including Oct4, Sox2,

and Nanog, displayed similar binding patterns between the

most- and least-variable genes. However, we observed a

distinct chromatin state signature associated with the most-var-

iable genes, including enrichment of the H3K27me3 mark and

Ezh2 occupancy, as well as depletion of H3K36me3. Our anal-

ysis suggests that chromatin regulators may play an important

role in mediating gene expression variability at the single-cell

level (Figure 2C).

We then aimed to further discriminate the list of most-variable

genes using the chromatin marks found to correlate for gene

expression variation. As shown in Figure 2D, we observed three

distinct patterns, suggestingmultiple pathways leading to fluctu-

ations in gene expression. Cluster 1 genes were strongly en-

riched for H3K27me3 and Ezh2 binding andmoderately enriched

for H3K4me3, suggesting a role of polycomb group proteins in

mediating expression variability. Cluster 2 genes were moder-

ately enriched for H3K27me3, H3K4me3, and H3K36me3. Clus-

ter 3 genes were enriched for H3K4me3 and H3K36me3,

indicating a possible role of Setd2.

Importantly, the most-variable genes were enriched for previ-

ously defined bivalent genes marked by both H3K27me3 and

H3K4me3 in their promoters (22% of the most variable versus

6% for all the genes measured in our assay; Figures 2D and

S2B–S2D; Bernstein et al., 2006). We also found that overall

gene expression variability was significantly higher among
ell Reports 14, 956–965, February 2, 2016 ª2016 The Authors 957
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Figure 1. Single-Cell mRNA-Seq of Mouse Embryonic Stem Cells

(A) The C1 (Fluidigm) microfluidic system for single-cell capture and library generation.

(B) Protocol for the template-switch method (SMARTer Kit; Clontech) for global mRNA amplification from single cells.

(C) Comparison of results from template-switching amplification method (SMART) and sequence-specific amplification method (SSA) for single-cell mRNA

quantification. Amplified single-cell cDNAs were tested by qPCR using selected gene primers. Expression level distributions are presented as violin plots.

(D) Bar chart depicts the number of expressed genes in each single-cell mRNA-sequencing samples.

(E) A scatterplot showing the correlation between J1 ESC single-cell mRNA-seq data and bulk-cell mRNA-seq data.

(F) A gene expression correlation heatmap from single-cell expression data reveals separation of different gene expression modules that reflect network

heterogeneity in mouse ESC culture.
bivalent genes (p = 1.0E�32; KS test; Figure S2E).Whereas biva-

lent genes have been commonly considered to be silent in ESCs,

previous studies have been limited to population level analysis.
958 Cell Reports 14, 956–965, February 2, 2016 ª2016 The Authors
Here, using single-cell analysis, we observed that many bivalent

genes are in fact actively transcribed in a subset of cells and that

the overall distribution is bimodal, suggesting that the
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Figure 2. Distinct Chromatin States Mark

Gene Expression Variability

(A) Selection of the most-variable genes (red) and

the least-variable genes (purple) using Lowess

coefficient of dispersion (LCOD) analysis.

(B) The choice of LCOD as the criteria for

measuring gene expression variability.

(C) Comparison of chromatin states between the

most- and least-variable genes in mouse ESC

culture.

(D) Analysis of selected chromatin marks on the

most-variable genes reveals three clusters of

genes with different characteristics.
transcriptional activities in an ESC may be highly dynamic and

that the bivalent domains may play a role in modulating the

frequency of gene activation.
Cell Reports 14, 956–965
Computational Analysis Reveals
ESC Early Priming Pathway
To better understand the complex struc-

ture driven by heterogeneity in gene

expression, we used locally linear

embedding (LLE) dimensionality reduc-

tion analysis. LLE is an unbiased

approach that computes a low dimen-

sional representation of the data, pre-

serving the original distances between

neighborhoods points (Roweis and

Saul, 2000). As seen from the LLE pro-

jection, a culture of morphologically

‘‘undifferentiated’’ ESCs was comprised

of different subgroups (Figures S3A and

S3B). The distribution of cell states sug-

gests a defined pathway exiting pluripo-

tency. In order to delineate this pathway

more accurately, we applied a principal

curve analysis and reconstructed a

smooth path that passes through the

cells at all stages (Figures 3A and

S3C). By mapping the individual cells

onto the principal curve, we identified

three distinct cellular states (Figures 3A

and S3C). On the left, the closely clus-

tered population corresponds to the

naive ESC state. The cells within this

population express pluripotency

markers (e.g., Nanog, Sox2, and Klf2)

at high level (Figures 3A and S3C). In

addition, expression of differentiation

markers was not detected in this group.

On the top of the curve, we defined a

previously unrecognized population,

consisting of ‘‘primed’’ cells. These

ESCs simultaneously express pluripo-

tent markers (e.g., Sox2 and Nanog)

and differentiation markers (e.g., Gata4,

Gata6, and Lamb1). This population
appears to represent a transcriptionally primed cellular state

in which cells are exiting the naive ESC state and under tran-

sition to a differentiated state. The third cluster of cells express
, February 2, 2016 ª2016 The Authors 959
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Figure 3. Computational Analysis Reveals

ESC-Priming Pathway

(A) Local linear embedding plus the principal curve

analysis reveals early priming pathway in the

mouse ESCs in culture.

(B) Expression pattern of most-variable genes

through the ESC-priming pathway indicates a

transitional state that co-expresses pluripotent

markers and differentiation markers.

(C) Hierarchical clustering of single-cell gene

expression data reveals the primed pluripotent

cells in ESC culture.

(D) Hierarchical clustering of single-cell gene

expression data reveals the primed pluripotent

cells in the blastocyst stage ICM. Note that the

primed EPI cells co-express pluripotent markers

and PE markers.
Gata6 and Gata4 at high level and pluripotent markers at low

level. Cells of this population are predominantly representative

of PE lineage cells, which are considered to be the default dif-

ferentiation state for wild-type ESCs in culture. Of note,

expression of Tet1, Ezh2, and Suz12 was high in the naive

state, reduced in the primed state, and then repressed in

differentiated cells (Figure S3C), whereas the endogenous

control markers, Actb and Gapdh, were robustly expressed

in all cells.
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To examine in a systematic fashion the

contribution of each gene to the pluripo-

tency exit pathway, we calculated the

Pearson correlation between its ex-

pression level in a cell and the mapped

position on the principal curve. For the

most-variable genes, we identified a sub-

set whose expression levels were highly

correlated with the differentiation path,

including Lama1 and Lamb1 (Figure S3D).

These genes are likely to play an impor-

tant role in initiating cell differentiation.

Similarly, we also identified another sub-

set whose expression levels are anti-

correlated with the differentiation path,

such as Tet1 and Tet2. These genes are

likely to play an important role in mainte-

nance of pluripotency. Figure 3B depicts

an expression heatmap of highlighted

genes along the early ESC differentiation

path. In the heatmap, we show that

primed cells co-express pluripotent and

differentiation modules.

The primed ESC state maintains a

distinct gene expression signature (Fig-

ure S3E). Hierarchical clustering of sin-

gle-cell data also distinguishes this state

as a unique cell-type cluster that co-ex-

presses pluripotency markers and differ-

entiation markers (Figure 3C). In order to

link the state with in vivo developmental
processes, we reanalyzed previously published single-cell data

from blastocyst stage ICM cells (Guo et al., 2010). We found a

corresponding primed cell-type cluster that is distinct from

known PE and EPI cell clusters in the blastocyst ICM (Figure 3D).

The special cluster of blastocyst cells also co-expresses Sox2,

Gata4, and Gata6. The identification of a primed state adds to

the complexity of seemingly homogenous pluripotent cells and

suggests stepwise exit from the naive pluripotent state both

in vitro and in vivo.



External Culture System Affects Network Variability
A central question regarding cellular heterogeneity is whether

variability in gene expression is derived from internal transcrip-

tional ‘‘noise’’ or results from fluctuation in response to external

signals. To address this question, we searched for upstream

regulators of the variably expressed genes defined by our anal-

ysis. We used the Haystack pipeline (Pinello et al., 2014) to

identify enriched transcription factor motifs upstream of

different groups of highly variable genes (Figure 4A). For clus-

ter 1 variable genes, we observed enrichment for a motif recog-

nized by Zbtb33. For cluster 2 genes, the motif for TCF factors

was enriched. For cluster 3 genes, the most-enriched motif cor-

responded to that for serum response factor, SRF. TCF factors

lie downstream of glycogen synthase kinase 3 (GSK3) path-

ways in ESCs (Martello et al., 2012). SRF is a critical transcrip-

tion factor that binds to the c-fos serum response element

(Norman et al., 1988) that lies downstream of serum response

and the MAPK pathways (Hill et al., 1993). These clues suggest

that the serum-based culture conditions generally employed for

ESCs might be a major contributor to variable gene expression

observed in single-cell analysis. Indeed, downstream effectors

for these signaling pathways are highly variable in cultured

ESCs (Figures S4A and S4B).

Besides the classical serum-based culture conditions, a

serum-free 2i culture system targeting both the MAPK and

GSK3 pathways has been found to maintain mouse ESC plurip-

otency (Ying et al., 2008). To ascertain the contribution of

serum-based culture conditions on expression variability, we

assessed expression in J1 ESCs at the single-cell level in me-

dium containing normal serum, knockout serum replacement,

or 2i chemicals (PD184352 and CHIR99021). We analyzed

these three ESC cultures using a more-cost-effective single-

cell qPCR protocol that we previously described (Guo et al.,

2013). We selected 96 genes for analysis, including known

pluripotency regulators and differentiation markers, as well

genes that displayed strong variability under standard culture

conditions.

On examination of the single-cell data from cells under the

three culture conditions, we found that ESCs cultured in serum

expressed more markers of differentiation (e.g., Id2, Lamb1,

and Snai1) than ESCs in 2i medium (Figure S4C). On LLE pro-

jection of single-cell data, global expression of 2i ESCs was

more tightly distributed than that of ESCs cells cultured in

serum or serum replacement (Figure 4B). Specifically, by

focusing on distribution over the first principal component

and distribution of expression SD, we confirmed that ESCs

cultured in 2i medium exhibit the least variation. Medium with

serum led to the greatest heterogeneity in expression (Figures

4C, 4D, and S4D). As revealed by violin plots in Figure 4D,

the expression distribution of key regulators suggested a

more-homogenous transcriptional network in 2i ESCs. For

example, Tbx3, which is a highly variable pluripotency marker,

showed clear bimodal distribution in serum-cultured ESCs.

However, under 2i conditions, the percentage of Tbx3-express-

ing cells was significantly increased, whereas the differentiation

priming marker Snai1 was repressed. These findings were

confirmed in E14 ESCs, as well as an independent clone of

J1 ESCs (Figure S4E).
C

We next asked whether the reduced heterogeneity under 2i

conditions was accompanied with altered epigenetic status.

We searched for an effect of 2i culture on the bivalent marks of

highly variable genes using available epigenomic data (Marks

et al., 2012). The overall number of bivalent genes was reduced

dramatically in 2i-cultured ESCs, as compared with ESCs

cultured in serum-containing medium (Figure S4F). We also

found that, among the most-variable genes defined in serum-

cultured ESCs, two-thirds of bivalent markers lost their bivalency

in 2i conditions (Figure 4E).

We then utilized published single-cell DNA methylation data

(Smallwood et al., 2014) to interrogate the link between gene

expression variation and DNA methylation variation. For each

gene, we considered the region [TSS-2kb, TES+2kb] and

calculated the difference in methylation variance between

serum and 2i conditions. Interestingly, we found a moderate

correlation (r = 0.33; p value = 0.0016) between the difference

in methylation variance and the difference in gene expression

variance between serum and 2i conditions (Figure 4F). When

cells were cultured with serum, Tbx3 and Snai1, two variable

markers in ESCs, showed strong variation of DNA methylation

level in gene bodies. However, when cultured with 2i medium,

such epigenetic variation was significantly reduced (Fig-

ure S4G), suggesting that reduction of DNA methylation vari-

ability may in part contribute to reduction of gene expression

variability.

In summary, the nature of the culture conditions represents an

important contributor to bivalency, gene expression variation,

and DNA methylation variation in mouse ESCs. With replace-

ment of serum and proper targeting of the related signaling path-

ways, variability among ESCs is largely controllable without

hampering pluripotency and self-renewal.

DISCUSSION

Cellular heterogeneity has been accepted as a hallmark of both

embryonic and adult stem cells (Graf and Stadtfeld, 2008;

Chambers et al., 2007). It has been proposed that variation in

gene expression arises from transcriptional noise and network

fluctuation and that associated heterogeneity accounts for sto-

chasticity of cell fate decisions in stem and progenitor cells

(Chang et al., 2008). Using mouse ESCs as a model, we have

investigated global gene expression variability at single-cell

resolution.

In agreement with recently published single-cell analyses of

mouse ESCs (Gr€un et al., 2014; Kolodziejczyk et al., 2015;

Kumar et al., 2014; Papatsenko et al., 2015), we observed

significant heterogeneity in gene expression in the serum-

cultured mouse ESCs. Using LLE analysis, we showed that

heterogeneity does not appear to be stochastic but rather fol-

lows a defined differentiation pathway toward PE-like cells.

Importantly, we defined a primed ESC state that reflects transi-

tion from a naive to differentiated state. ESCs in the primed

state co-express pluripotency and differentiation modules.

We have also provided evidence that the primed state is devel-

opmentally relevant, as the same signature is found in the

developing mouse blastocyst during PE and EPI lineage

specification.
ell Reports 14, 956–965, February 2, 2016 ª2016 The Authors 961
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Figure 4. External Culture System Affects

ESC Network Stability

(A) Motif analysis of most-variable genes predicts

the roles of several important signaling pathways in

regulating gene expression variability.

(B) LLE projection of single-cell analysis data from

ESCs cultured with serum, knockout serum

replacement, or 2i medium.

(C) Box plots for the expression distribution over the

first PC reveal reduced gene variability in the

2i-medium-cultured ESCs.

(D) Violin plots showing expression level distribution

of selected genes in ESCs cultured with serum,

knockout serum replacement, or 2i medium.

(E) 2i medium reduces bivalency in the list of most-

variable genes defined with serum-cultured ESCs.

(F) Correlation of single-cell-level gene expression

variability and single-cell-level DNA methylation

variability in 2i and serum-cultured ESCs.

962 Cell Reports 14, 956–965, February 2, 2016 ª2016 The Authors



Prior studies emphasized transcriptional networks and

microRNA pathways that lead to gene expression variation (Ko-

lodziejczyk et al., 2015; Kumar et al., 2014). In the current work,

we associate gene expression variation with epigenetic charac-

teristics. We used LCOD analysis to extract true variability from

mean expression level and describe the unique epigenetic status

that distinguishes the highly variable genes. We propose that a

proportion of previously defined bivalent marked genes are actu-

ally highly variable in their expression in cultured ESCs, suggest-

ing a possible role for bivalent domains in modulating the

frequency of transcription activation. One caveat is that ChIP-

seq data are obtained from population-level studies. As a result,

it remains unclear whether bivalent domains are established in all

cells or only a fraction of cells. Future developments of methods

for the mapping of epigenetic marks at single-cell resolution are

needed to resolve these issues.

Importantly, we demonstrated that the culture environment

contributes strongly to observed gene expression variability.

Upon replacement of serum and targeting the MAPK and

GSK3 pathways by 2i conditions, ESCs in culture exhibit greater

homogeneity in gene expression. Our results confirm findings

from other recent studies (Gr€un et al., 2014; Kumar et al.,

2014). The FGF and MAPK pathway are closely related with

EPI cell differentiation (Ying et al., 2008; Guo et al., 2010). WNT

and GSK3 signaling has been implicated in control of gene

expression noise during development (Arias and Hayward,

2006). Usingmotif analysis, we have connected gene expression

variation with these important signaling pathways. Interestingly,

replacing serum with knockout serum replacement alone also

reduces gene expression variation, suggesting that other

serum-responsive pathways contribute to ESC culture heteroge-

neity. Moreover, we show that 2i-cultured ESCs exhibit reduced

bivalency and altered single-cell-level gene expression variation

correlates with single-cell-level methylation status. We provide

an example that gene expression variation is controllable

through proper perturbation of key signaling pathways.

The plasticity of mammalian cellular states complicates an un-

derstanding of cell fate decision mechanisms. Comprehensive

characterization of dynamic stem cell differentiation pathways

requires single-cell gene expression analysis. Acquisition of

similar analyses from different cellular systems should eventually

allow for the mapping of the cell fate decision landscape and the

modeling of dynamic network configurations during mammalian

development.

EXPERIMENTAL PROCEDURES

Cell Culture

Mouse ESCs were cultured in feeder-free conditions. Cells cultured in serum

were grown in DMEM + Glutamax (GIBCO) + 15% fetal bovine serum (FBS)

(Gemini) + penicillin/streptomycin (GIBCO) + non-essential amino acids

(NEAAs) (GIBCO) + b-mercaptoethanol (EmbryoMax ES cell-qualified; Milli-

pore) + 1,000 U/ml LIF (Millipore). Cells cultured in knockout serum replace-

ment were grown in DMEM + Glutamax (GIBCO) + 20% knockout serum

replacement (GIBCO) + penicillin/streptomycin (GIBCO) + NEAAs (GIBCO) +

b-mercaptoethanol (EmbryoMax ES cell-qualified; Millipore) + 1,000 U/ml

LIF (Millipore). Cells cultured in 2i medium were grown in DMEM + Glutamax

(GIBCO) + 20% knockout serum replacement (GIBCO) + penicillin/strepto-

mycin (GIBCO) + NEAAs (GIBCO) + b-mercaptoethanol (EmbryoMax ES

cell-qualified; Millipore) + 1,000 U/ml LIF (Millipore) + 1 mM MEK inhibitor
C

PD0325901 (StemGent) + 3 mM GSK3 inhibitor CHIR99021 (StemGent). Cells

from the same line, same stock, and same passage were used for the culture

system comparison experiment from Figures 4B–4D.

Single-Cell mRNA-Seq

Feeder-free J1 ESCswere grown in the presence of serum and LIF. ESCswere

dispersed via trypsin-EDTA treatment. Single-cell whole-transcriptome ampli-

fication was performed using the FluidigmC1 Single-Cell Auto Prep System

(C1 System) as per the manufacturer’s recommendations (full details available

at http://www.fluidigm.com). Amplified cDNAs were diluted with C1 DNA dilu-

tion reagent, quantified using Quant-it HS system, and validated by qPCRwith

selected primers. Successfully amplified single-cell cDNA samples were

selected and diluted to the same concentration. Single-cell libraries were con-

structed using the Nextera XT DNA Sample Preparation kit (Illumina), pooled

using Nextera XT DNA Sample Preparation Index Kit (Illumina), and then

sequenced using Hiseq 2500 (Illumina). Each library was sequenced twice

on two lanes.

Single-Cell qPCR

Individual primer sets (total of 96) were pooled to a final concentration of 0.1 mM

for each primer. Individual cells were sorted directly into 96-well PCR plates

loadedwith 5 ml RT-PCRmastermix (2.5 ml CellsDirect reactionmix, Invitrogen;

0.5 ml primer pool; 0.1ml RT/Taq enzyme, Invitrogen; 1.9ml nuclease-freewater)

in eachwell. Sortedplateswere immediately frozen ondry ice. After brief centri-

fugation at 4�C, the plates were placed immediately on PCR machine. Cell ly-

ses and sequence-specific reverse transcription were performed at 50�C for

60min. Then, reverse transcriptase inactivation and Taq polymerase activation

was achieved by heating to 95�C for 3 min. Subsequently, in the same tube,

cDNA was subjected to 20 cycles of sequence-specific amplification by dena-

turing at 95�C for 15 s, annealing, and elongation at 60�C for 15 min. After

preamplification, PCR plates were stored at �80�C to avoid evaporation.

Pre-amplified products were diluted 5-fold prior to analysis. Amplified single-

cell samples were analyzed with Universal PCR Master Mix (Applied Bio-

systems), EvaGreen Binding Dye (Biotium), and individual qPCR primers using

96.96 Dynamic Arrays on a BioMark system (Fluidigm). Ct values were calcu-

lated using the BioMark Real-Time PCR Analysis software (Fluidigm).
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